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Lattice gas and spin ordering on stacked triangular lattices 

J N Reimers and J R Dahn 
Depanment of Phyirs, Simon Fraser University, Bumaby, British Columbia, Canada 
V5A 1S6 

Received 11 FebNary 1992 

Abstract. Mean field theory is used to determine the highest lemperalure ordered phases 
of lattice gas and spin systems on stacked miangular lattices. We include nearest neighbour 
repulsive or antiferromagnetic interactions and map out the ordered phases as a function 
of interactiom out to fifth neighbours. We show that the type of stacking, ...AAA. .. , 
... ABAB... (bexagonai dose packed), ... ABCABC .. (cubic dosed packed), has a 
profound effect on tile nature of the ordering. For .. .ABAB.. . and . , , ABCABC.. 
slacking b e  inter-plane interactions cdn mmpound lhe frustralion within the planes 
resuiting in phase diagrams dominated by incommensurate order just below the critical 
temperature. Comparison with relevant experimental lattice gas and magnetic systems is 
made. 

1. Introduction 

Lattice gas and spin models have been used extensively in the past to describe both 
intercalation and magnetic systems, respectively. Intercalation is observed in a wide 
variety of materials, and occurs when the chemical potential p of the intercalant can 
be lowered when the intercalant enters the solid (Solin 1982, Whittingham 1978). 
The intercalant species usually occupy specific sites that form a lattice in the host 
material. In a lattice gas representation of an intercalation system one considers the 
host as a lattice of sites that are either occupied or unoccupied. If the intercalant 
species interact not only with the lattice but also amongst themselves then effects 
such as long-range superlattice order can occur. In statistical mechanics, lattice gas 
models are equivalent to the king model of magnetism which is a lattice of spins that 
point either up or down. Magnetic models with vector spins (XU or Heisenberg) 
have no analogue in lattice gas theory. 

Magnetic ordering on two-dimensional triangular lattices with nearest neighbour 
antiferromagnetic interactions is a well Studied problem. Mnnier (1950) solved the 
two-dimensional king model on a triangular lattice proving that no long-range order 
occurs when the nearest neighbour interaction is antiferromagnetic. Antiferromag- 
netic ordering on a single triangular lattice is fmtrated because at least one antifer- 
romagnetic bond on each triangle must be broken, Le. the spins are parallel instead of 
antiparallel. However, when triangular lattices are stacked along the third dimension 
(E direction) and inter-planar interactions are non-zero, then long-range ordering can 
occuf (Blankschtein er uf 1984, Matsubara and Sakari 1987a, Kim el af 1990). Here, 
we show that the type of ordering depends very much on how the triangular sheets 
are stacked. In some cases interactions between planes can compound the frustration 
already present in single two-dimensional planes. 

0953-8984R2/418105+14(604.50 @ 1992 IOP Publishing Lid 8105 



8106 J N Rcimers and J R Dahn 

The simplest stacking has the lattice sites in neighbouring layers directly above 
and below each other with no offset along the 6t or 6 directions. We call this 
...AAA.. . stacking (see figure l(a)). Stacking with every other plane shifted by 
($, 4) in fractional hexagonal coordinates is called . . . ABAB.. . stacking. Here lattice 
sites in the B layers are directly over the centres of half of the A layer triangles 
(see figure I@)). The third common possibility is . . . ABCABC.. . stacking with B 
and C layers shifted by ( 5 ,  $) and ($, i), respectively (figure I(c)). . . . ABAB.. . 
is n.!led hexagonal close packing and . . . ABCABC . . is cubic close packing in the 
notation of hexagonal plane packing (Ashcroft and Mermin 1976). These names can 
be misleading because me close packing occurs only when the cell constant ratio 
c / a  = ( : ) ' I2 and (6)1/2 for hexagonal and cubic close packing, respectively. Most 
of the experimental systems we will consider do not have the ideal ratio. 

(b) ..&AB... A - 
A I  ; I  I 

I I 1- C 
I 1 ,  I I I 

R 

Figure 1. (a) A Schematic picture of ...AAA. ..-lype stacking with short boken lines 
indicating the five of the interactions considered. (b) As in (a) except for , . , ABAB.. , 
stacking of the triangular sheets with three inlemctiom (c) As in (a) exapl for 
. .. ABCABC., . stacking of the viangular heels with three interactions. 

The goals of this work are to show that the stacking sequence profoundly affects 
the nature of lattice gas or magnetic ordering, and to provide insight into which . 
interactions are necessary to stabilize a particular ordered state. A mean field theory 
for lattice gas systems is developed and compared to a similar theory for magnetic 
systems. Without any assumptions about sublattice ordering, the nature of the highest 
temperature ordered phases is predicted. Throughout this work the nearest neighbour 
interaction J ,  < 0 will be antiferromagnetic or repulsive. Phase diagrams in the space 
of the further neighbour interactions from J2 to Js are calculated. The Js are defined 
in figure 1 for all three stacking arrangements. 

Wc first describe the mean field theory formalism (section 2), then we discuss 
the phase diagrams for the three types of stacking (section 3) and finally summarize 
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(section 4). A comparison of the results with some experimental systems is given in 
section 3 for each lattice type. 

2. Mean field theory 

21. Lattice gas mean field theory 

Consider a lattice gas model with the following Hamiltonian 

where c is a lattice vector, t ,  = (0, l}, depending on whether lattice site T is occupied 
or unoccupied, J(T - T ' )  is the interaction potential between sites c and c' and p is 
the chemical potential. 

Here J < 0 and J > 0 correspond to repulsive and attractive interactions, 
respectively. We will only consider interactions that extend out to the fust few 
coordination shells. p has contributions from the local site potential in the lattice 
and secondly, in the case of electrochemical cells, from an externally applied voltage 
V = -ep (McKinnon and Haering 1983). The free energy can he expressed as (with 
IC, = 1) 

F(T,P) = Tr(p?t)+TTr(plnp)  (2) 
where p is the full density matrix. Within the mean field approximation, p is approx- 
imated as a product of single-site density matrices 

c 

Following the procedure of Harris ef a1 (1984) we minimize F ( T , p )  with respect to 
p, = p(d,) subject to the constraints that ensure normalization and keep the internal 
energy fixed 

Tr(p,) = 1 ( 4 4  

Tr(p,t,) = zv ( 4 4  

(a/%) Tr [ T p ,  1n P, - P,(L i- P A ) I  = 0 (5) 

where zr is the average occupancy of site T ,  obtaining 

where A, and 1-1, are Lagrange multipliers for the constraints (4) and (a), respec- 
tively. From (4) and (5) one immediately determines 

where fit can be interpreted as a local chemical potential for site r and p = 1/T. 
From (46) and (6) we find 

Substituting (6) and (7) into (2) one obtains the mean field approximation to the bee 
energy 

P- = exi)(P/.L,t,)/[l+ ex~(Pp,)I  (6) 

zt = ' W p , t , )  = 1/P+ exi , ( -P~,) l .  (7) 
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22 Landau expansion for latrice goses 

In order to deal with equation (8) analytically it is convenient to expand the entropy 
term in some small parameter. In general x, is not a small parameter so we express 
2, io terms of a uniform component x and a non-uniform component qt: 

J N Rei" and J R Dahn 

2, = x + 11, (9) 

where 

C %  = 0. 
r 

Combining (81, (9) and (10): 

In order to diagonalize the second-order term in q, we express 11, in terms of its 
Fourier transform 

where the prime on the summation symbol indicates that q = 0 is not included in 
the summation (this is necessary to satisfy (IO)). In order for q7 to be real we must 
have 

where 



Spin ordering on stacked lriangulur lattices 8109 

and 

C(z) = (T/12)(1- 3 z +  3z2)/[z3(1 - .I3]. (19) 
Provided A ( z , q )  > 0 for all q,  f ( T , p )  will be minimized by qq = 0 for all q. 
However, once A ( z ,  q )  < 0 for a single q, f ( T , p )  will be minimized when that 
q # 0. TI find the q which is selected one must examine Jq to determine for which 
p'it is maximized. Therefore the mean field theory predicts a phase transition to an 
ordered phase at a critical temperature 

T , = z ( l - s ) m a x { J q } .  q (20) 

If the third-order term in (14) is non-zero the second-order transition predicted 
by (20) may be pre-empted by a first-order transition at a higher temperature. In 
general, the maximum of Jq is not at q = 0 when there are repulsive interactions 
and frustration. 

The treatment above assumes a Bravais lattice with one site per unit cell. For 
. . . ABAB.. . stacking of triangular sheets there are two sites per unit cell and Fourier 
transforming is insufficient to diagonalize the second-order term in (11). In this case 
Jq is a 2 x 2 matrix 

~i~ = J"(T)  exp(iq. T )  (21) 
r 

with a and b labelling the sublattices and Jab(.)  is the interaction between two 
sites on sublattices a and b which are separated by T .  Now the highest temperature 
ordered phase is determined by the maximum eigenvalue of .Jib. 
2.3. Meun @id rhwiy for magnetic system 
We will consider the spin Hamiltonian with no external field 

T - d)S, . s,, (22) 
1 
2 

3t = --CJ( 
I.,*' 

where J(T-T ' )  now represents an exchange mediated interaction and S, is a classical 
unit spin with R components. 

J < 0 and J > 0 correspond to antiferromagnetic and ferromagnetic interactions, 
respectively. Three cases of physical interest are Ising (n = I), XY (n = 2) and 
Heisenberg (n = 3). A mean field treatment similar to the one above (Reimers el a1 
1991) yields the following Landau free energy: 

where 

and 

m: = (S, .) .  

J i b  has the same definition as before (see equation (21)). Again the highest temper- 
ature ordered phase is determined by the maximum of eigenvalue J i b .  
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3. Phase diagrams 

3.1. Preliminaries 

In order to see the effects of further neighbour interactions in either lattice gas or 
magnetic systems we calculate phase diagrams in the space of Jz/lJ1l and J3/IJ11. 
The phase diagrams are divided in regions characterized by the wavevector q that 
maximizes J,. For the most part the phase diagrams were calculated by maximi- 
ing Jp numerically. Regions of incommensurate order are denoted for example by 
(q,q,O),  which indicates the direction (in this case the (110) direction) in qspace 
of the ordering wavevector. The ordering wavevectors reported in the diagrams 
are often multiply degenerate due to symmetry. For example a wavevector like 
( q , q , q ' )  is actually 12-fold degenerate: &(q,q,q ' ) ,  &(-2q,q,q'), f(q,-2q,q'),  
k(q,q,-q') ,  f(-2q,q,-q') and i (q,-2q,-q') .  Throughout we use the standard 
crystallographic representation of the hexagonal structure with the in-plane lattice 
vectors a and 1, subtending an angle of 120°, i.e. a.b  = -$az .  The magnitude of the 
ordering wavevector is in general an irrational function of J2 and J3. A factor of 27r 
has been divided out of all q-vectors in figures far clarity. W e  must emphasize that 
these results only apply at temperatures just below T,. In particular, incommensurate 
phases for king and lattice gas systems are unstable at low temperature because they 
do not satisfy the so-called 'hard spin' conditions 

J N Reiniers and J R Dahn 

zv = 0 or 1 for all T (260) 

or 

17m71 = 1 for all T .  (266) 

3.2 ...AAA... stacking 

Figure l (a )  shows that Jz is a second neighbour in-plane interaction and J3 is the 
inter-planar interaction for this structure. We have also included a fourth neighbour 
interaction J4 which may be relevant for systems with closely spaced planes. Using 
(15) we obtain 

J ,  = 251 [COS(Q,) + cos(q,)  +COS(% t qy)l 

t 25, [cos('I, - rr,) + cos(2q, + 4 , )  + cos(q, t 2qJ 

+ 2 J 3 c 0 s ( q z )  + 4J,cos(q,) [cos(4.) t cos(q,) + COS(% + 4,)l ' 

(27) 

The phase diagram for J4 = 0 is shown in figure 2. The result is rather simple since 
the in-plane and inter-plane portions of J ,  de-couple. When J3 < 0, qz = + ( 2 ~ )  
which means q, or 7n7 alternate sign from one plane to the next. Although the sign 
of J3 is important, the strength is completely irrelevant to the nature of the ordered 
states. When J, / \J , (  > -b  three-sublattice ordering occurs (q, = 5(27r) and 
q, = i (2s)) .  For a lattice gas system at I = i, only one of the three sublattices will 
be occupied forming a long-range ordered state with a unit cell having dimensions 
&a x &a (see figure 3(a)). An analogous situation occurs at z = $ with two 
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..AAA... Stachg  

Figure 2 ?he phase diagram, as a function 
of further neighbour interactions J, and J3, for 
the triangular lattice with ...AAA .. stacking and 
JL < 0 .  Phases are charaaerized by their ordeling n 1 

J&I 

(a) 2 = 
M x x ) O  Unoccupied 
amoma Occupied 

. 0 0 . 0 0 .  

0 . 0 0 . 0  

. 0 0 . 0 0 .  

0 0 . 0  

0 0 . 0 0 .  &*g 0 0 . 0  

o y a o o .  

e = (*/,.l/S>O) 

WdveVeCton. 

(b)  2 = '/* 
00000 Unoccupied 
-Occupied ....... 

0 0 0 0 0 0  ....... 
0 0 0 0 0 0  ....... 
0 0 0 0 0 0  ....... 

P = (*/Z,O,O) 

(4 z = I/, 

c " 0  Unoccupied 
OOOo. Occupied 

0 a 0 . 0 . 0  

0 0 0 0 0 0  . 0 . 0 . 0 . 
0 0 0 0 0 0  

0 . 0 . 0 . 0  

0 0 0 0 0 0  

. 0 . 0 . 0 .  

Gl = (%.O.O) & = (o,L/e,o) 
it = (L/o.-'/P.o) 

Figure 3. (a) The 4 x 6 superlattice Structure for a lattice gas with Wavevector q = 
( f ,  f , O )  at z = $: an outline of the Unit cell is shown. ( b )  n e  superlattice stwcture 
for a lattice gas with wavevector q = (i,O,O) at z = $. (c) The superlattice swcture 
for a lattice gas with wvevectom q, = ($,O,O), 9 2  = (O,i,O) and 43 = (L 1 O), 
at I =  L 

z z a '  
I '  

sublattices fully occupied. For king spins a ferrimagnetic state occurs in which each 
triangle has one spin up and two down, or vice versa. For vector spins a three- 
sublattice order occurs with each sublattice making a 120' angle with the other two, 
2s shown in figure 4(a). 

For J z  < 0 phases with q = (i,O,O) and q = ( $ , O , i )  are predicted. For a 
lattice gas system at z = $ this ordered state consists of alternating rows of occupied 
and unoccupied sites (see figure 3(b)). The analogous situation for spins is shown in 
figure 4(b). In general for a lattice gas problem one must consider the full range of 
z, 0 6 z < 1. For magnetic systems large enough fields to sample the whole range 
0 6 Iml < 1 are usually experimentally inaccessible. As an example we will consider 
the case q = ($,O,O) with J2/1J11 = -0.5 and J3/1J11 = 0, in detail. 

There are six wavevectors in the first zone which simultaneously maximize Jq. 
These are f ( i , O , O ) ,  f(O,$,O) and *($,$,O). Due to the constraint (13) there 
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Figure 4 (U) The Ihree-sublattice 1U)O spin stmc- 
ture of triangular lattice anlifenumagnets with vec. 
tor spins. miis mrraponds to a wavevector of 
q = ( $ , + , O ) .  (b)&in((n)aceptforawavevec- 
tor q =  ($,o,o). 

Disordered 
0.8 

2 

Figure 5. The mean field ( z , T )  phase diagram 
for a two-dimensional model with J&Jtl = -0.5 
and waveveclor q = ( , $ , O , O ) .  Phases I and I1 are 
shown in figures 3(c) and qb) ,  respectively, and I’ 
is the inverse of 3(b). N a m  spacer in between 
the labelled phases are mexislence regions for the 
two neighbouring phases. 

are three independent order parameters, ql, q2 and q3, which must satisfy 

qq, = qi exp(i4;) i = 1 . . . 3  

where all qi are real. Since only the relative phase angles 4; are important we choose 
41 = 0. On substituting (28) into the Landau expansion (14) one obtains 

(28) 

f(T,lr) = !+(I) + $ [ T -  T,(r)l(vT + v,” + 7 3  + 12B(r)v1vz%CoS(#,z + 43) 
+ 6 C ( z )  [(v? + v: + + %vh:  + v% + 7h31 (29) 

where T,(r) = 4z(1 - z ) ~ J l ~ .  The product qlq2q3 can always be made negative and 
the cosine is maximized when (62 = b3 = 0. At this point one must decide between 
two extreme cases for which the second-order term is invariant: 

Case 1. ql = q, q2 = q3 = 0 (see figure 3(6)): 

f i ( r , ~ )  =  PO(^) + i [ T -  T , ( ~ ) l q ’ +  6C(z)v4. (30) 

case 2. q 1  = qz = q3 = q / d 3  (see figure 3(c)): 

f2(T, l r )  = P ~ ( + )  + f [ T  - Tc(r)1v2 + 4 / 6 B ( x ) q 3 +  lOC(z)77’. (31) 

Case 2 has all three modes mixed with equal weight, which allows the third-order 
term. For case 1 only one mode is present and there is no third-order term. For 
z < f, B(z) is negative and case 2 has a lower free energy with q > 0. The same is 
true for I > 4 except now q < 0. z = f is a special case with B(4) = 0 and fl and 
fz differ only in the fourth-order terms from which we see that case 1 is preferred 
since C( f) > 0. 
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The full (r,T) phase diagram (see figure 5) has been calculated by numerically 
minimizing (8) on a four-sublattice cluster which is commensurate with all of the 
ordering wavevectors. Phases I and I1 are shown in figures 3(c) and 3(b), respec- 
tively. Phase I' is the inverse of I. The narrow areas between the labelled phases are 
coexistence regions. 

In general, the determination of which ordering modes are selected must be done 
on a &e-by-case basis. The third-order term can always be made negative when 
2 + 4 and if three of the ordering wavevectors can satisfy q1 + q, + q3 = 0 the 
system will select at least three of the order parameters and not just one. 

For systems with small inter-planar spacings the bond distance spanned by J ,  in 
figure 1(u) may be longer than the J4 bond distance. J4 may also be important for 
other systems since there are twelve J4 bonds and only six J,  bonds. The phase 
diagram in the space of J3 and J4 with Jz = 0 is shown in figure 6. In this case the 
strength of .I3 becomes important. The diagram is dominated by regions of three- 
sublattice order. Along the phase boundaries labelled 1 the in-plane interaction J1 
cancels with J4, resulting in a degeneracy throughout the whole q, = 4 plane. 

The results for ...AAA.. . stacking are rather simple and do not really require 
such sophisticated methods, the gross features of the phase diagram could be deter- 
mined solely from an intuitive.approach. However, as we shall see, the results for 
other stackings are much more complicated. 

..AAA... Staclring 
3 , . I .  3 . 3 , .  . , . I  

Figure 6 ?he phase diagram, as a function 
of tunlier neigllbour interactions .lh and 53, for 
the triangular lattice with ...AAA.. . stacking and 
51 < 0. Along the phase Laundaries labelled 1 in 
the in-plane interaction 51 cancels with J4* result- 
ing in a degeneracy throughout the whole q: = ; 
plane for Js < 0 and the whole qz = 0 plane for 
J, > 0. 

..U,.. Stacking 

- U 
'1 0 1 

Jz/W 
Figure 7. ?he phase diagram, as a function of 
further neighbour in-plane interactions J2 and Js9 
for the viangular lattice with ..,AAA,, . stacking 
and J, < 0. ?he two full circles in the bottom 
left quadrant indicate the end points of the line 
(see text) where the system selecls the ordering 
waveveclor q = 2rr(0.357. 0357) experimentally 
observed in RbMnBr3, 

The layered dichalcogenide ZH-TaS, is known to intercalate lithium, form- 
ing Li,?aS,. Ordering of the lithium ions occurs at z = and 2 = $ 
@ahn and McKinnon 1984a, b), presumably with the superlattice structure shown 
in figure 3(a). CsMnBr, is a well studied stacked triangular antiferromagnet 
with X Y  spins and orders with the 120° spin structure (Eibschutz el a1 1973). 
The related material RbMnBr, has the same basic crystal structure as CsMnBr,; 
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.. ABAB ... Stacking 
Degenerataon Lines 1 

Figure S The phase diagram, ns a function of Figure 9. Degeneration lines m q-space 
further neighbour interactions Jz and 53,  for lhe (...ABAB. .. stacking) for J2 = 0 and J3/1J11 = 
triangular lattice wilh .. .ABAB... slacking and 1.0 (outer circle), 0.8, 0.6, 0.4, 0.2, 0.1 and 0.0 (the 
J1 < 0. The broken line labelled 1 is not a phase point at ( 5 ,  $)). 
boundaty bul indicates that Jq is maximized by an 
in6nite number of wavevectors whiclr form a de- 
generation line in h e  q, = 0 plane. Only along 
Ihe line labelled 2 does the system select lhe lhree- 
sublattice ordering wilh q = (i, 5,q.). 

however, magnetic ordering in this material is incommensurate with wavevector 
q = 2%(0.357(4),0.357(4),0) (Glinka et a1 1973). In order to explain this within 
the context of mean field theory one must invoke further in-plane interactions or 
start with a more complicated Hamiltonian. Figure 7 shows the phase diagram as a 
function of Jz and J ,  where J, is the in-plane interaction to the third coordination 
shell. Along the line J2/1J11 = 0.83O4J,/~J1~-0.1484 for -0.126 6 Js < -0.105 
the system selects the in-plane wavevector observed in RbMnBr,. The two end points 
of the l i e  are shown in figure 7 by full circles. 

3.3. ...ABAB.. . stacking 

The unit cell has lattice sites at v l  = (O,O,O) and v z  = ( f , z , $ ) .  This lattice 
(figure l(6)) is a non-Bravais lattice and is also non-centrosymmetric, hence J:b is 
an Hermitian 2 x 2 matrix: 
J;' = J z 2  q = 25, [COS(%) + C0S(Qy) +cos(q= + ny)l  

+ 2Jz  [cos(q, - qy) + cOs(Q, + q, )  + cos(q, + 2q,)] (32) 

(33) 

(34) 

and 
J t 2  = JZ' '  = ~ ~ ~ ~ ~ ( 4 ~ ~ )  (,i(n=t29,)/3 + ,i(qZ-qv)/3 + e-i(2~.+c1.)/3 1 . 
This matrix has eigenvalues 

= Jtl f lJ3cos(~q,)I {3 +2[cos(q,)+cos(qy) t 4 q , +  q,)1} 

of which At is always a maximum. The relative phases of the two sublattices are 
determined by the eigenvectors of J$. We avoid the complication of dealing with 
eigenvectors by selecting q, = 0 for J3 > 0 and qz = 2n for J3 < 0, the second 
case resulting in an anti-phase relationship between the A and B layers. 
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The results are shown in figure 8. This phase diagram is dominated by regions 
of incommensurate order unlike the ...AAA... stacked lattice. Along the phase 
boundary labelled 2 for J3 = 0, the system selects the usual three-sublattice structure 
with q = ( 4 ,  k,?), where the question mark indicates that q, is indeterminate because 
there is no inter-plane interaction. As J3 becomes non-zero the ordering wavevector 
deviates continuously from (g, g, 0), resulting in incommensurate long-range order. 
For small J3, q = ( q , q , O )  and 

lJ312 + O(lJ3P). (3s) 
Q -  1 fi fi( 124 - 1) - - +  - 

211 3 6(6Jz t 1)IJ3’- 72 (6Jz+  1)3 

The broken line labelled 1 is not a phase boundary but represents another special 
situation. When Jz = 0, A: is maximized not by a single p i n t  in the zone hut by 
an infinite number of points which form a ring in the q, = 0 plane. Such lines are 
commonly referred to as degeneration lines. For Jz  = 0 and qz = 0 we can write 

A: = 25,Q f 1J3[(3 t 2Q)’” 

Q = cos(q,) t cos(cl,) + cos(q, t 4,). 

Q = ; ( J 3 / 2 J 1 ) ’  - %. 

(36) 

(37) 

Upon maximizing with respect to Q we obtain 

(38) 

Solutions to (38) for various values of J 3 / J 1  are shown in figure 9 and form con- 
centric rings centred about q = ($,$,O), which increase in size as J3 increases. 
Below T, the system will be confined to a somewhat restricted phase space which 
includes only those Fourier modes that lie on the degeneration line. This restricted 
phase space will most likely result in short-range correlations but no long-range order 
within the mean field approximation. Thermal fluctuations beyond the mean field 
level may break this degeneracy and select a long-range ordered phase (Villain et ai 
1980). Matsubara and Sakari (1987b) claim that a transition to incommensurate long- 
range order takes place, implying that the system does select only one q-vector on the 
degeneration line. This may be an artifact of the finite lattice sizes for which only a 
discrete set of ordering wavevectors are available. Diep has shown that the system un- 
dergoes a first-order transition to long-range order for the special case J3 = J1 < 0 
(Diep 1992). We are unaware of any lattice gas systems with . . .ABAB.. . stacking 
but the uranium sublattice in the heavy fermion superconductor UPt, has this struc- 
ture. Below 5 K (Aeppli et a1 1988) antiferromagnetic order (figure 4(6)) sets in with 
propagation vector q = ($,O, 1) (Goldman er a1 1986). This suggests a negative Jz 
and J3, as seen from figure 8. 

3.4. . . .ABCABC. . . stacking 

This lattice when described in the hexagonal setting has three sites per unit cell at 
T ,  = (O,O,O), p2 = (i, $, i) and = ($, 4, ; ) .  However, it is more convenient to 
work in the rhombohedral setting with one atom per unit cell. The lattice vectors in 
the two representations are related by 
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In the rhombohedral basis 

Jp = 251 [COS(% - 4,) + c0s(qy - 9,)  + C O S ( %  -%)I 
+ 2 4  [cos(% - 9, - r l , )  + cos(29, - Q, - 9,) 
f COS(2qz - 9, - 9,)] 4- 2J3 [COS(&) + coS(G',) + coS(P,)] . (40) 

The corresponding phase diagram is shown in figure 10, which is again dominated 
by regions of incommensurate order. The ordering wavevectors in figure 10 refer 
to the hexagonal basis. As with .. .ABAB... stacking the results are non-trivial 
and qualitatively different from the results for . . .AAA.. . stacking. Here again the 
strength of J3 is important. 

Figure 10. The phase diagram, as a tune- 
tion of further neighbour interactions Jz 
and Js,  for the triangular lattice with 
... ABCABC ... stacking and J, < 0. 
Along the line labelled 1 the system 
selects an infinite number of ordering 
waveveetorr which form a degeneration 
tine in q-space. Only along he tine la- 
belled 2 does the V t e m  Select thme- 
sublattice order with q = (i ,  &, q:). 

Again three-sublattice order is stable when J ,  > 0 and J3 = 0 which is the phase 
boundary labelled 2 in figure 10. When J3 > 0 the system goes incommensurate with 
wavevector p = ( q , q , O )  where 

Degeneration lines of a different nature occur in this lattice when J ,  = 0. For small 
J3 the lines are spirals along the q, direction and are not confined to the q, = 0 
plane. These degeneration lines have been described in more detail by Rastelli and 
Dssi (19S6, 1987). 

The LiMO, (M = Ni and CO) series of compounds have the . . .ABCABC.. . 
type stacking of the ... 0-Li-0-M-0-Li-0. .. triangular sheets. Hence both the 
transition metal and lithium layers are stacked in the rhombohedral fashion. Recent 
electrochemical and in situ x-ray diffraction measurements (Reimers and Dahn 1992) 
have shown that the lithium ions in Li,CoO, form a superlattice structure at x = f. 
The observed lattice distortion in Li,CoO, is consistent with the lattice decoration 
in figure 3(b) which corresponds to an in-plane wavevector q = (i,O). The results 
of this section should also be applicable to lithium intercalation in Li,NiO, which 
is currently not as well understood. Both of these materials are currently used as 
cathodes in high voltage, secondary lithium batteries. LiNiO, is also of interest 
because it is believed to be an S = antiferromagnet (Huakawa et a1 1985). Again 
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the Ni3+ magnetic moments form a triangular lattice with . . . ABCABC.. . stacking. 
The highly quantum nature of the spins in this system leads to complications beyond 
the scope of this paper. Previous workers have considered this system as essentially 
two-dimen$ional and have paid little attention to the nature of the stacking. As we 
have shown here the type of stacking and the strength of the inter-planar interactions 
can be wry important. 

4. Summary and conclusions 

Using a mean field approach we have calculated the nature of the ordered phases 
in stacked triangular lattice gases and antiferromagnets. For ...ABAB... and 
. . .ABCABC.. . stacking of the triangular sheets further neighbour interactions will in 
most cases stabilize incommensurate long-range order. For lattice gas and Ising spin 
system we expect the incommensurate phases to 'lock in' at low temperature and 
go commensurate. The results show the profound effects of the stacking when inter- 
plane interactions are non-zero. These phase diagrams provide a useful starting point 
for more sophisticated approaches such as Monte Carlo and duster expansions. In 
particular they show where in the space of interaction parameters one should perform 
a Monte Carlo simulation. For a given choice of interactions they indicate suitable 
boundary conditions for simulations and what choice of sublattices are suitable for 
cluster expansions. 
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